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ABSTRACT 

Today Cloud computing is on demand as it offers dynamic flexible resource allocation, for reliable and guaranteed 
services in pay-as-you-use manner, to Cloud service users. So there must be a provision that all resources are made 
available to requesting users in efficient manner to satisfy their needs. This resource provision is done by considering 
the Service Level Agreements (SLA) and with the help of parallel processing. Recent work considers various 
strategies with single SLA parameter. Hence by considering multiple SLA parameter and resource allocation by 
preemption mechanism for high priority task execution can improve the resource utilization in Cloud. In this paper 
we propose an algorithm which considered Preemptable task execution and multiple SLA parameters such as 
memory,network bandwidth, and required CPU time. An obtained experimental results show that in a situation 
where resource contention is fierce our algorithm provides better utilization of resources.   
Keywords- Cloud computing, Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Resource 
management, Software as a Service (SaaS), Virtual machine, Virtualization.  
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I . INTRODUCTION 
 
Cloud computing is the delivery of computing as a 
service rather than a product, whereby shared resources, 
software and information are provided to users over the 
network. Cloud computing providers deliver application 
via the Internet, which are accessed from web browser, 
while the business software and data are stored on 
servers at a remote location. Cloud providers are able to 
attain the agreed SLA, by scheduling resources in 
efficient manner and by deploying application on proper 
VM as per the SLA objective and at the same time 
performance of the applications must be optimized. 
Presently, there exists a more work done on scheduling 
of applications in Clouds [1], [2], [3]. These approaches 
are usually considering one single SLA objective such as 
cost of execution, execution time, etc. Due to 
combinatorial nature scheduling algorithm with multiple 
SLA objective for optimal mapping of workload with 
multiple SLA parameters to resources is found to be 
NPhard [4]. The available solutions are based on the use 
of heuristics.  
When a job is submitted to the clouds, it is usually 
partitioned into several tasks. Following two questions 
are to be consider when applying parallel processing in 
executing these tasks: 1) how to allocate resources to  

 
tasks; 2) task are executed in what order in cloud; and 3) 
how to schedule overheads when VMs prepare,  
 
terminate or switch tasks. Task scheduling and resource 
allocation can solve these three problems. In embedded 
systems [5], [6] and in high performance computing [7], 
[8] task scheduling and resource allocation have been 
studied. Typically, efficient provisioning requires two 
distinct steps or processes: (1) initial static planning step: 
the initially group the set of VMs, then classify them and  
deployed onto a set of physical hosts; and (2) dynamic 
resource.  
 
II . RELATEDWORK 
  
In [9] author proposed architecture, using feedback 
control theory, for adaptive management of virtualized 
resources, which is based on VM. In this VM-based 
architecture all hardware resources are pooled into 
common shared space in cloud computing infrastructure 
so that hosted application can access the required 
resources as per their need to meet Service Level 
Objective (SLOs) of application. The adaptive manager 
use in this architecture is multi-input multi-output 
(MIMO) resource manager, which includes 3 controllers: 
CPU controller, memory controller and I/O controller, its 
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goal is regulate multiple virtualized resources utilization 
to achieve SLOs of application by using control inputs 
per-VM CPU, memory and I/O allocation.  
The seminal work of Walsh et al. [10], proposed a 
general two-layer architecture that uses utility functions, 
2013 International Conference on Intelligent Systems 
and Signal Processing (ISSP) adopted in the context of 
dynamic and autonomous resource allocation, which 
consists of local agents and global arbiter. The 
responsibility of local agents is to calculate utilities for 
given current or forecasted workloads and range of 
resources, for each AE and results are transfer to global 
arbiter. Where, global arbiter computes near-optimal 
configuration of resources based on the results provided 
by the local agents. In global arbiter, the new 
configurations applied by assigning new resources to the 
AEs and the new configuration computed either at the 
end of fixed control intervals or in an event triggered 
manner or anticipated SLA violation. In [11], authors 
propose an adaptive resource allocation algorithm for the 
cloud system with preempt able tasks in which 
algorithms adjust the resource allocation adaptively 
based on the updation of the actual task executions. 
Adaptive list scheduling (ALS) and adaptive min-min 
scheduling (AMMS) algorithms are used for task 
scheduling which includes static task scheduling, for 
static resource allocation, is generated offline. The 
online adaptive procedure is used for re-evaluating the 
remaining static resource allocation repeatedly with 
predefined frequency. In each re-evaluation process, the 
schedulers are re-calculating the finished time of their 
respective submitted tasks, not the tasks that are assigned 
to that cloud. The dynamic resource allocation based on 
distributed multiple criteria decisions in computing cloud 
explain in [12].  
In it, the author’s contribution is tow-fold, first 
distributed architecture is adopted, in which resource 
management is divided into independent tasks, each of 
which is performed by Autonomous Node Agents (NA) 
in ac cycle of three activities: (1) VMPlacement, in it 
suitable physical machine (PM) is found which is 
capable of running a given VM and then assigned VM to 
that PM, (2) Monitoring, in it total resources use by 
hosted VM are monitored by NA, (3) In VMSelection, if 
local accommodation is not possible, a VM need to 
migrate at another PM and process loops back to into 
placement. And second, using PROMETHEE method, 
NA carry out configuration in parallel through multiple 
criteria decision analysis.  
This approach is potentially more feasible in large data 
centers than centralized approaches. The problem of 
resource allocation is considered in [13], to optimize the 
total profit gained from the multidimensional SLA 
contracts for multi-tire application. In it the upper bound 
of total profit is provided with the help of force-directed 
resource assignment (FRA) heuristic algorithm, in which 
initial solution is based on provided solution for profit 
upper bound problem. Next, distribution rates are fixed 
and local optimization step is use for improving resource 
sharing. Finally, a resource consolidation technique is 

applied to consolidate resources to determine the active 
(ON) servers and further optimize the resource 
assignment.   
 
III. USETECHNIQUES 
 
In this section we are describing SLA based resource 
provisioning and online adaptive scheduling for 
Preemptable task execution, these two methodologies 
which are combined in proposed algorithm for effective 
utilization of cloud resources to meet the SLA objective.   
A. Cloud Resource provisioning and schedulingheuristic  

 
 
The service requests from customers host by combining 
the three different layers of resource provisioning as 
shown in following figure 1[24]. Service deployment 
requests from customers is placed to the service portal 
(step 1 in Figure1), which forward the requests to the 
request management and processing component to 
validate the requests with the help of  SLA(step 2). If the 
request is valid, it is then passed to the scheduler and 
load-balancer (step 3). For deploying the requested 
service, scheduler selects the appropriate VMs, as per 
SLA and priority, through the provisioning engine in 
PaaS layer and the load-balancer balances the service 
provisioning among the running VMs (step 4). The VMs 
on the virtualization layer manage by provision engine 
and the virtualization layer interacts with the physical 
resources with the help of the provision engine in IaaS 
layer (step 5). The LoM2HiS framework monitors the 
lowlevel resource metrics of the physical resources at 
IaaS layer [25] (step 6). If SLA violation occurs, reactive 
actions are provided by the knowledge database 
techniques [26] in FoSII (step 7). The requested service 
status and the SLA information are communicated back 
with the service portal (step 8). Provisioning can be done 
at the single layers alone. However, approach which we 
considered in [24] aims to provide an integrated resource 
provisioning strategy.   
The SLA terms are used to find a list of appropriate VMs 
(AP) capable of provisioning the requested service (R). 
The load-balancer is presented below in Algorithm 1. 
Appropriate VM list is provided as input to it, (line 1 in 
Algorithm 2). In its operations, in order to know how to 
balance the load among the VMs it first finds out the 
number of available running VMs in the data centre (line 
2). In the next step, it gets a list of VMs which are 
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already allocated to job i.e. list of used VMs. (line 3). It 
clears the list if this list is equal to the number of running 
VMs, because that means all the VMs are currently 
allocated to some applications (lines 4-7). Algorithm 1 
Load Balancer  Input: AP(R,AR) availableVMList //list 
of available VMs form each cloud  usedVMList //list of 
VMs,currently provision to certain job  
deployableVm=null  if  size(usedVMList)= 
size(availbleVMList) then  clear usedVMList End if  for 
vm in (AP,R,AR) do  if vm not in usedVMList then  Add 
VM to usedVMList deployableVm= vm Break  End if  
End for  Return deployableVm Therefore, the first VM 
from the appropriate and available VM list can be 
selected for the deployment of the new job request. 
Lastly, the selected VM will be added to the list of used 
VMs so that the load-balancer will not select it in the 
next iteration (lines 8-15).  
 
B.Preemptable task execution 
When a scheduler receives customer’s service request, it 
will first partition that service request into tasks in the 
form of a DAG. Then initially static resource allocation 
is done. In [11] authors proposed two greedy algorithms, 
to generate the static allocation: the cloud list scheduling 
(CLS) and the cloud min-min scheduling (CMMS).  
1) Cloud list scheduling (CLS): This CLS is similar to 
CPNT [27]. The definitions used for listing the task are 
provided as follow. The earliest start time (EST) and the 
latest start time (LST) of a task are shown as in (1) and 
(2).The entry-tasks have EST equals to 0. And The LST 
of exit-tasks equal to their EST.   
Algorithm 2 Forming a task list based on priorities  
Require (input): A DAG, Average execution time AT of 
every task in the DAG Ensure (output): A list of task P 
based on priorities  
The EST is calculated for every task  
The LST is calculated for every task 3. Empty list P and 
stack S, and pull all task in the list of task U  
4. Push the CN task into stack S in decreasing order of 
their LST 5. While the stack S is not empty do  
If top(S) has un-stacked immediate predecessors then  
S the immediate predecessor with least  
LST  
Else  
P top(S)  
Pop top(S)  
End if  
End while  
Once the above algorithm 2 forms the list of task 
according their priority, we can allocate resources to 
tasks in the order of formed list. When all the 
predecessor tasks of the assigned task are finished and 
cloud resources allocated to them are available, the 
assigned task will start its execution. This task is 
removed from the list after its assignment. This 
procedure is repeats until the list is empty.  
2) Cloud min-min scheduling (CMMS): Min-min 
scheduling is popular greedy algorithm [28]. The 

dependencies among tasks not considered in original 
minmin algorithm. So in the dynamic min-min algorithm 
used in [2], authors maintain the task dependencies by 
updating the mappable task set in every scheduling step. 
The tasks whose predecessor tasks are all assigned are 
placed in the map able task set. Algorithm 3 shows the 
pseudo codes of the CMMS algorithm.   
A cloud scheduler record execution schedule of all 
resources using a slot. When an AR task is assigned to a 
cloud, first resource availability in this cloud will be 
checked by cloud scheduler. Since besteffort task can be 
preempted by AR task, the only case when most of 
resources are reserved by some other AR task. Hence 
there are not enough resources left for this AR task in the 
required time slot. submitted to this cloud, not the tasks 
that are assigned to this cloud.  
 
IV . SCHEDULING ALGORITHM  
 
In proposed priority based scheduling algorithm we have 
modified the scheduling heuristic in [24] for executing 
highest priority task with advance reservation by 
preempting best-effort task as done in [11]. Algorithm 4 
shows the pseudo codes of priority based scheduling 
algorithm (PBSA).  
Algorithm 3 Priority Based Scheduling  
Algorithm (PBSA)  
Input: UserServiceRequest 
//call Algorithm 2 to form the list of task based on 
priorities  
3.getglobalAvailableVMList and gloableUsedVMList 
and also availableResourceList from each cloud 
schedular 
4. // find the appropriate VMListfromeach cloud 
scheduler 5. if AP(R,AR) !=  then  
// call the algorithm 1 load balancer  
deployableVm=load- 
balancer(AP(R,AR))  
8. Deploy service on deployableVM 
deploy=true  
Else if R has advance reservation and best-effort task is 
running on any cloud then 11. // Call algorithm 3 CMMS 
for executing  
R with advance reservation  
12. Deployed=true  
13.Else if global Resource Able To Host  
Extra VM then  
Start new VM Instance  
Add VM To Available VM List  
Deploy service on new VM  
Deployed=true  
Else  
queue service Request until  
queue Time > waiting Time  
Deployed=false  
End if  
If deployed then  
return successful;  



KEY-AGGREGATE CRYPTOSYSTEM AND PARALLEL ALLOCATION IN CLOUD STORAGE… M.SATHISHKUMAR et al., 

 

 
266 

 

terminate;  
Else 27. return failure;  
28. terminate.  
 
As shown above in Algorithm 4, the customers’ service 
deployment requests (R), which are composed of the 
SLA terms (S) and the application data (A) to be 
provisioned, are provided as input to  
scheduler (line 1 in Algorithm)  
1). When service request (i.e. job) arrive at cloud 
scheduler, scheduler divide it in tasks as per their 
dependencies then the Algorithm 2 is called to form the 
list of tasks based on their priority.  
2). In the first step, it extracts the SLA terms, which 
forms the basis for finding the VM with the appropriate 
resources for deploying the application. In next step, it 
collects the information about the number of running 
VMs in each cloudand the total available resources . 
3). According to SLA terms appropriate VMs (AP) list is 
form, which are capable of provisioning the requested 
service . 
 
Once the list of appropriate VMs is formed, the 
Algorithm 1- load-balancer decides which particular VM 
is allocated to service request in order to balance the load 
in the data center of each cloud (lines 6-9). When there is 
no VM with the appropriate resources running in the 
data center of any cloud, the scheduler checks if the 
service request (R) has advance reservation then it search 
for best-effort task running on any cloud or not, if it 
found besteffort task then it calls Algorithm 3 CMMS 
for executing advance reservation request by preempting 
best-effort task (lines 10-12).   
 
V . EXPERIMENTAL RESULTS  
 
Experiment setup  
We evaluate the performance of our priority based 
scheduling algorithm using CloudSim simulator. 
CloudSimis a scalable simulation tool offering features 
like support for modeling service brokers, resource 
provisioning, application allocation policies, and 
simulation of large scale Cloud computing environments 
including data centers, on a single computing machine. 
Further information about CloudSim can be found in 
[29]. With different set of jobs simulation is done in 10 
runs. In each run of simulation, we simulate a set of 70 
different service requests (i.e. jobs), and each service 
request is composed of up to 18 sub-tasks. We consider 
4 clouds in the simulation. All 70 service requests will 
be submitted to random clouds at arbitrary arrival time. 
Among these 70 service request, 15 requests are in the 
AR modes, while the rest are in the best-effort modes, 
with different SLA objectives. The scheduler will re-
schedule these tasks with a predefined probability . The 
parameters in Table 1 are set in simulation randomly 
according to their maximum and minimum values. Since 
we focus only on the scheduling algorithms, we do our 

simulations locally without implementing in any exiting 
cloud system or using VM interface API.  
 
We consider two situations for arrival of service request. 
In first situation, called as loose situation, we spread 
arrival time of request widely over time so that request 
does not need to contend resources in cloud. In other 
situation we set arrival time of requests close to each 
other, so known as tight situation. The time elapses from 
request is submitted to the request is finished, is defined 
as execution time.  
 
VI . RESULTS  
The average job execution time in loose situation. We 
find out that the PBSA algorithm has the minimum 
average execution time. The resource contentions occur 
when best-effort job is preempted by AR job. As 
resource contention is less in loose situation, so that 
estimated finish time of job is close to the actual finish 
time. Hence adaptive procedure does not impact the job 
execution time significantly.  
 

 
 
Figure 2. Average job execution time in loose situation  
In figure 3 tight situation results are shown in which 
PBSA performs better than CMMS. In tight situation 
resource contention is more so the actual finish time of 
job is often later than estimated finish time. As AR job 
pre-empt best-effort job, the adaptive procedure with 
updated information works more significantly in tight 
situation.   
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Figure 3. Average job execution time in tight situation  
 
VII . CONCLUSIONS  
 
In this paper, we present dynamic resource allocation 
mechanism for Preemptable jobs in cloud. We propose 
priority based algorithm, in which considering multiple 
SLA objectives of job, for dynamic resource  allocation 
to  AR  job  by preempting best-effort job. 
Simulation results show that PBSA perform better than 
CMMS in resource contention situation. The extension 
or future work can be the prediction VM which will be 
free earlier and according its capability selecting the task 
from waiting queue for execution on that VM.  
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